Environmental Protection Agency | Example calibration points (percent) | Acceptable for calibration? | |--|---| | 10, 25, 40, 55, 70, 85
10, 30, 50, 70, 90 | Yes. No, though equally spaced and entire range covered, a minimum of six points is needed. | - (4) Additional calibration points may be generated. For each range calibrated, if the deviation from a least-squares best-fit straight line is two percent or less of the value at each data point, concentration values may be calculated by use of a single calibration factor for that range. If the deviation exceeds two percent at any point, use the best-fit non-linear equation which represents the data to within two percent of each test point to determine concentration. - (d) The initial and periodic interference, system check, and calibration test procedures specified in 40 CFR part 1065, subparts C and D, may be used in lieu of the procedures specified in this section. [61 FR 52102, Oct. 4, 1996, as amended at 70 FR 40451, July 13, 2005] ## $\S 91.319$ NO_X converter check. - (a) The efficiency of the converter used for the conversion of NO_2 to NO is tested as given in paragraphs (a)(1) through (a)(8) of this section (see Figure 2 in appendix B to this subpart). - (1) Using the test setup as shown in Figure 2 in appendix B to this subpart (see also §91.318 of this chapter) and the procedures described in paragraphs (a)(2) through (a)(8) of this section, test the efficiency of converters by means of an ozonator. - (2) Calibrate the HCLD in the most common operating range following the manufacturer's specifications using zero and span gas (the NO content of which must amount to about 80 percent of the operating range and the NO₂ concentration of the gas mixture less than 5 percent of the NO concentration). The NO_X analyzer must be in the NO mode so that the span gas does not pass through the converter. Record the indicated concentration. - (3) Calculate the efficiency of the NO_X converter as described in §91.318(b). - (4) Via a T-fitting, add oxygen continuously to the gas flow until the con- centration indicated is about 20 percent less than the indicated calibration concentration given in paragraph (a)(2) of this section. Record the indicated concentration as "c". The ozonator is kept deactivated throughout the process. (5) Activate the ozonator to generate enough ozone to bring the NO concentration down to about 20 percent (minimum 10 percent) of the calibration concentration given in paragraph (a)(2) of this section. Record the indicated concentration as "d". Note: If, with the analyzer in the most common range the $NO_{\rm X}$ converter cannot give a reduction from 80 percent to 20 percent, then use the highest range which will give the reduction. - (6) Switch the NO analyzer to the NO_X mode, which means that the gas mixture (consisting of NO, NO_2 , O_2 and N_2) now passes through the converter. Record the indicated concentration as "a". - (7) Deactivate the ozonator. The mixture of gases described in paragraph (a)(6) of this section passes through the converter into the detector. Record the indicated concentration as "b". - (8) Switched to NO mode with the ozonator deactivated, the flow of oxygen or synthetic air is also shut off. The NO_X reading of the analyzer may not deviate by more than ± 5 percent of the theoretical value of the figure given in paragraph (a)(2) of this section. - (b) The efficiency of the converter must be tested prior to each calibration of the NO_X analyzer. - (c) The efficiency of the converter may not be less than 90 percent. ## § 91.320 Carbon dioxide analyzer calibration. - (a) Prior to its introduction into service, and monthly thereafter, or within one month prior to the certification test, calibrate the NDIR carbon dioxide analyzer as follows: - (1) Follow good engineering practices for instrument start-up and operation. Adjust the analyzer to optimize performance. - (2) Zero the carbon dioxide analyzer with either purified synthetic air or zero-grade nitrogen. - (3) Calibrate on each normally used operating range with carbon dioxide-